
27
M U L T I P L E DO C U M E N T
I N T E R F A C E (M D I)
Many programs deal with only one file or document at a time. These applications are classified as Single Document
Interface, or SDI, applications. An example of an SDI application is the Windows Notepad applet. However, users often
need to see multiple documents at a time, or be able to present multiple views into the same document. Applications
that let the user do this are called Multiple Document Interface applications.

An MDI application consists of three types of windows. The main window of the application is known as the MDI
frame window. It consists of the title bar, sizing border, system menu, minimize button, and other system-defined
features. An MDI application registers a window class and provides a window procedure for the MDI frame window,
just as it would for a normal application window. An MDI application does not display output in its MDI frame
window’s client area, however. Instead, it creates an MDI client window that occupies the client area of the MDI frame
window. The MDI client window belongs to the preregistered window class MDICLIENT. The MDI client window
supports the creation and management of individual MDI child windows within which the document information is
displayed. An MDI application may wish to display different types of document information, and therefore may contain
different types of MDI child windows. Figure 27-1 shows a simple MDI application, and identifies the MDI frame
window, client window, and child window.

Creating an MDI Application
The first step in creating an MDI application is to register your window classes. You will need a window class for the
MDI frame window, and a window class for each different type of MDI child window that your application supports.
The class structure for an MDI frame window is filled in like the class structure for an SDI application’s main
window. The class structure for an MDI child window is filled in like the class structure for child windows in SDI
applications, with two exceptions. First, the class structure for an MDI child window should specify an ICON, since
the user can minimize MDI child windows within the MDI frame window. Second, the menu name should be NULL,
since an MDI child window does not have its own menu. The following example illustrates the registration of two
window classes. MyMDIApp is the class name of an MDI frame window class, and MDIChild is the class name of an
MDI child window class.

LPCTSTR lpszAppName = "MyMDIApp";

LPCTSTR lpszChild = "MDIChild";
LPCTSTR lpszTitle = "MDI Test Application";

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow)
{
 MSG msg;
 HWND hWnd;
 WNDCLASS wc;

 // Register the main application window class.
 //..
 wc.style = CS_HREDRAW | CS_VREDRAW;
 wc.lpfnWndProc = (WNDPROC)WndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInstance;
 wc.hIcon = LoadIcon(hInstance, lpszAppName);
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = (HBRUSH)(COLOR_APPWORKSPACE+1);
 wc.lpszMenuName = lpszAppName;
 wc.lpszClassName = lpszAppName;

 if (IS_WIN95)
 {
 if (!RegisterWin95(&wc))
 return(FALSE);
 }
 else if (!RegisterClass(&wc))
 return(FALSE);

 // Register the window class for the MDI child windows.
 //...
 wc.lpfnWndProc = (WNDPROC)ChildWndProc;
 wc.hIcon = LoadIcon(hInstance, lpszChild);
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
 wc.lpszMenuName = NULL;
 wc.lpszClassName = lpszChild;

 if (IS_WIN95)
 {
 if (!RegisterWin95(&wc))
 return(FALSE);
 }
 else if (!RegisterClass(&wc))
 return(FALSE);
 .
 .
 .

BOOL RegisterWin95(CONST WNDCLASS* lpwc)
{
 WNDCLASSEX wcex;

 wcex.style = lpwc->style;
 wcex.lpfnWndProc = lpwc->lpfnWndProc;
 wcex.cbClsExtra = lpwc->cbClsExtra;
 wcex.cbWndExtra = lpwc->cbWndExtra;
 wcex.hInstance = lpwc->hInstance;
 wcex.hIcon = lpwc->hIcon;
 wcex.hCursor = lpwc->hCursor;
 wcex.hbrBackground = lpwc->hbrBackground;
 wcex.lpszMenuName = lpwc->lpszMenuName;
 wcex.lpszClassName = lpwc->lpszClassName;

 // Added elements for Windows 95.
 //...............................
 wcex.cbSize = sizeof(WNDCLASSEX);
 wcex.hIconSm = LoadImage(wcex.hInstance, lpwc->lpszClassName,
 IMAGE_ICON, 16, 16,
 LR_LOADREALSIZE);

 return RegisterClassEx(&wcex);
}

After you register the window classes, create the MDI frame window just as you would in an SDI application.

 .
 .
 .
 // Create the main application window.
 //....................................
 hWnd = CreateWindow(lpszAppName,
 lpszTitle,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, 0,
 CW_USEDEFAULT, 0,
 NULL,
 NULL,
 hInstance,
 NULL
);

 if (!hWnd)
 return(FALSE);

 ShowWindow(hWnd, nCmdShow);
 UpdateWindow(hWnd);
 .
 .
 .

MDI Applications must call the TranslateMDISysAccel() function in the main message loop to process the pre-
defined MDI specific accelerator keys. For MDI applications that have an accelerator table, you must call the
TranslateMDISysAccel() function before the call to TranslateAccelerator() in order to allow Windows to handle any
pre-defined MDI accelerators before the application specific accelerators. Since this test application does not have an
accelerator table, only the TranslateMDISysAccel() function is called as shown in the following code segment:

 .
 .
 .
 while(GetMessage(&msg, NULL, 0, 0))
 {
 if (hWndClient && TranslateMDISysAccel(hWndClient, &msg))
 continue;

 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 .
 .
 .

Once the main message loop for your application is running, it becomes the responsibility of the MDI frame
window’s window procedure to coordinate the creation and management of the individual MDI child windows.

The MDI Frame Window
The MDI frame window is responsible for creating the MDI client window, usually during processing of the
WM_CREATE message. You create the MDI client window using the preregistered window class MDICLIENT.

The MDI client window will dynamically alter one of the pop-up menu items in the frame window’s menu bar, so
you must pass the menu handle for the pop-up menu that the MDI client window is to alter as the final parameter to
the CreateWindowEx() function. For more detailed information on how the MDI client window alters this pop-up
menu, refer to Menus in MDI applications later in this chapter.

HWND hWndClient = NULL;

// An ID that is different than all menu ids.

//...
#define ID_CHILDWINDOW 1000

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uMsg)
 {
 case WM_CREATE :
 {
 CLIENTCREATESTRUCT ccs;

 // Assign the 'Window' menu.
 //..........................
 ccs.hWindowMenu = GetSubMenu(GetMenu(hWnd), 1);
 ccs.idFirstChild = ID_CHILDWINDOW;

 // Create the client window.
 //..........................
 hWndClient = CreateWindowEx(WS_EX_CLIENTEDGE,
 "MDICLIENT", NULL,
 WS_CHILD | WS_CLIPCHILDREN,
 0, 0, 0, 0,
 hWnd, (HMENU)0xCA0, hInst, &ccs);

 ShowWindow(hWndClient, SW_SHOW);
 }
 break;
 .
 .
 .

One additional style bit is available when creating the MDI client window. If you create the MDI client with the
MDIS_ALLCHILDSTYLES style bit, Windows will not limit the valid style bits for MDI child windows. If the MDI
client window is created without the MDIS_ALLCHILDSTYLES style bit set, then only those values specified in Table
27-1 may be specified. Use of the MDIS_ALLCHILDSTYLES style bit allows an application to create MDI child
windows with nonstandard MDI child behaviors.

Table 27-1. dwStyle Parameter Values in CreateMDIWindow()

Value Description

WS_MINIMIZE Window is created minimized.
WS_MAXIMIZE Window is created maximized.
WS_HSCROLL Window has a horizontal scrollbar.
WS_VSCROLL Window has a vertical scrollbar.

The MDI frame window also is responsible for creating and destroying the individual MDI child windows. You
create MDI child windows using either the CreateMDIWindow() function or the WM_MDICREATE window message.
This is typically done in response to menu items such as File Open, File New, File Save, and File Close. The
following example, taken from the window procedure of the MDI frame window, illustrates the creation of an MDI
child window in response to the menu item IDM_FILE_NEW.

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uMsg)
 {
 case WM_COMMAND :
 switch(LOWORD(wParam))
 {
 case IDM_NEW :
 {
 HWND hWndChild;

 // Create a new child window.

 //...........................
 hWndChild = CreateMDIWindow((LPTSTR)lpszChild,
 "Document", 0L,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 hWndClient, hInst, 0L);

 ShowWindow(hWndChild, SW_SHOW);
 }
 break;
 .
 .
 .

In all cases where the MDI frame window procedure does not explicitly handle a particular message, that message
must be passed to the DefFrameProc() function, as opposed to the DefWindowProc() function in a normal window
procedure. This allows Windows to provide default MDI behavior.

The MDI Child Window
The work that would normally be done in an SDI application’s main window is carried out in MDI applications by the
MDI child window. The window procedure for an MDI child window is identical to its SDI counterpart, with the
exception of default message processing. An MDI child window uses the function DefMDIChildProc() to handle
unprocessed window messages.

The major philosophical difference between an SDI application window and an MDI child window is that the SDI
application contains only one instance of the application window, which is used to manipulate one set of data. An MDI
application will usually have several instances of the MDI child window, all acting on different sets of data. Note,
however, that there is only one window procedure specified for all instances of a given MDI child window. This means
that the code in the window procedure for an MDI child window must be able to determine which instance of the data
the current message is for.

The window procedure is passed the window handle of the MDI child window as its first parameter. You can use one
of several techniques to associate a particular set of data with this window handle.

The CreateMDIWindow() function and the WM_MDICREATE message allow the creating procedure, typically an
MDI frame window, to pass a 32-bit value to the MDI child window during the processing of its WM_CREATE
message. This 32-bit value could contain a pointer to the data structure that this MDI child window is to access. The
MDI child window could then store this pointer in one of the window’s extra bytes. Allocate space for the data by
specifying a value that is the number of bytes required to contain a pointer to your data structure for the cbWndExtra
member of the WNDCLASS structure when registering the window class. The MDI child window then can use
GetWindowLong(), casting as appropriate, to retrieve this pointer. The following example illustrates how an MDI
child window would retrieve this 32-bit value during processing of its WM_CREATE message.

LRESULT ChildWndProc(HWND hWndChild, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
static LPARAM FrameParam;

 switch(uMsg)
 {
 case WM_CREATE :
 {
 LPCREATESTRUCT lpCreateStruct = (LPCREATESTRUCT)lParam;
 LPMDICREATESTRUCT lpMDICreateStruct = (LPMDICREATESTRUCT)lpCreateStruct->lpCreateParams;

 FrameParam = lpMDICreateStruct->lParam;
 }
 break;
 .
 .
 .

An application can use window properties instead of using the window’s extra bytes. The advantage to window
properties is that you do not need to allocate extra space for the data when registering the window class. In addition,
window properties are accessed using strings, which can be self-documenting. In this case, the value of the window
property would be a pointer to the data structure associated with the given window.

Finally, some applications may find it more appropriate to keep individual data structures in a linked list, and to
include the window handle of the window associated with a given data structure as part of the structure itself. It is
then necessary only to traverse the linked list, matching window handles in the data structure against the window
handle given to the window procedure to determine for which data structure a given message is intended.

Menus in MDI Applications
The MDI frame window menu should include a window pop-up menu item. This pop-up menu item is typically defined
just before the Help pop-up menu item, and contains submenu items used to Tile, Cascade, Arrange Icons, and Close
All Child Windows. These are implemented using the window messages defined in the Message Summary section at
the end of this chapter. In addition, the MDI client window will add the names of newly created MDI child windows to
the bottom of the pop-up menu item you specify when creating the MDI client window.

Figure 27-2 shows a simple MDI application. There are currently four MDI child windows open, one of which has
been minimized to the bottom of the MDI client window. Notice the Window menu. The MDI client window has
dynamically placed the names of the four MDI child windows at the bottom of the pop-up menu, and has placed a
checkmark next to the currently active MDI child window.

Windows provides several accelerator keys for MDI applications. It requires no extra code to implement these
accelerators. These functions are provided simply by using the MDI versions of the default message-processing
functions in the MDI frame and MDI child windows, using the MDI accelerator translation function in your main
message loop, and having an MDI client window of the MDICLIENT class. Table 27-2 defines these new accelerator
keys.

Table 27-2. Accelerator Keys for MDI Applications

Accelerator Key Purpose

A-ª-º Opens the MDI child windows system menu.
A-4 Closes the active MDI child window.
A-6 Activates the next MDI child window.
A-F-6 Activates the previous MDI child window.

Table 27-3 specifies the Windows functions used to implement the MDI application interface. Detailed
descriptions of each function follow the table.

Table 27-3. MDI Function Summary.

Function Purpose

ArrangeIconicWindows Arranges minimized MDI child windows at the bottom of the MDI client window.
CascadeWindows Arranges nonminimized MDI child windows in a cascade (overlapped) arrangement.
CreateMDIWindow Creates a new MDI child window and returns its window handle.
DefFrameProc Used in the window procedure of an MDI frame window to process any unhandled

window messages.
DefMDIChildProc Used in the window procedure of an MDI child window to process any unhandled

window messages.
TileWindows Arranges nonminimized MDI child windows in a tiled (nonoverlapped) arrangement.
TranslateMDISysAccel Used in the main message loop of an MDI application to handle any pre-defined window accelerators specific to MDI windows.

Messages

WM_MDIACTIVATE When sent to an MDI client window, causes a new MDI child window to be activated. When received by an MDI child window,
indicates that the window is either being activated or deactivated.

WM_MDICASCADE When sent to an MDI client window, causes all of the MDI child windows to be cascaded.

WM_MDICREATE When sent to an MDI client window, creates a new MDI child window.
WM_MDIDESTROY Indicates to an MDI child window that it is being destroyed.
WM_MDIGETACTIVE When sent to an MDI client window, returns the window handle of the currently active MDI child window.
WM_MDIICONARRANGE When sent to an MDI client window, causes all of the minimized MDI child windows icons to be arranged along the bottom of the

MDI client window.
WM_MDIMAXIMIZE When sent to an MDI client window, causes the specified MDI child window to be maximized.
WM_MDINEXT When sent to an MDI client window, causes the MDI child window after (or before) the specified MDI child window to become

active.
WM_MDIREFRESHMENU When sent to an MDI client window, causes the MDI client to update the state of the menu after changes have been made.
WM_MDIRESTORE When sent to an MDI client window, causes the indicated MDI child window to be restored from either a maximized or minimized

state.
WM_MDISETMENU When sent to an MDI client window, sets the MDI frame menu to the indicated menu. This allows MDI child windows to implement

individual menus.
WM_MDITILE When sent to an MDI client window, causes all MDI child windows to be tiled.

ARRANGEICONICW INDOWS WIN32S WINDOWS 95 WINDOWS NT
Description An application can use ArrangeIconicWindows() to arrange all minimized MDI child windows.

An application also can use the WM_MDIICONARRANGE message as an alternative. Windows
will arrange the minimized MDI child windows along the bottom of the MDI client window.

Syntax UINT ArrangeIconicWindows(HWND hWndClient)

Parameters

hWndClient HWND: Specifies the window handle of the MDI client window that is to manage this MDI child
window.

Returns If successful, this function returns the height of one row of icons; otherwise, it returns zero.

Include File winuser.h

See Also WM_MDIICONARRANGE

Example The following code segment would appear as part of the window procedure for the MDI frame
window, responding to a menu item with the identifier IDM_ARRANGE.

HWND hWndClient;

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uMsg)
 {
 case WM_COMMAND :
 switch(LOWORD(wParam))
 {
 case IDM_ARRANGE :
 ArrangeIconicWindows(hWndClient);
 break;
 .
 .
 .

CASCADEW INDOWS WINDOWS 95
Description An application uses CascadeWindows() to arrange all nonminimized MDI child windows in a

cascaded (overlapped) manner. CascadeWindows() is similar to the WM_MDICASCADE message
and identical to the CascadeChildWindows() function, except that the user can specify the
window handles of the windows to be affected, and can limit the area of the MDI client window
that is used.

Syntax WORD API CascadeWindows(HWND hWndParent, WORD wFlags, LPCRECT lpWindowRect,
WORD nWindowCount, CONST HWND *lpWndArray)

Parameters

hWndParent HWND: Specifies the window handle of the parent window. Child windows of the parent window
will be arranged. This parameter typically specifies the MDI client window handle. If this
parameter is NULL, the desktop window is assumed.

wFlags WORD: Specifies various arrangement flags. Table 27-4 gives a list of valid values.

lpWindowRect LPCRECT: Points to a RECT structure that defines the boundaries within which the child
windows are arranged. If this parameter is NULL, the entire client area of the parent window is
assumed.

nWindowCount WORD: Specifies the number of window handles included in the lpWndArray array. This value is
ignored if lpWndArray is NULL.

lpWndArray CONST HWND *: Specifies an array of child window handles. If this parameter is NULL, then all
child windows of the parent window are subject to being arranged.

Returns The return value is the number of windows arranged. If the function fails, the return value is
zero.

Include File winuser.h

See Also CascadeChildWindows(), TileChildWindows(), TileWindow()

Related Messages WM_MDICASCADE

Example The following code segment responds the the Cascade menu item. If the application is running on
Windows 95, the CascadeWindows() function is called. If the application is running on Windows
NT, the WM_MDICASCADE message is sent to the MDI client window.

HWND hWndClient;

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uMsg)
 {
 case WM_COMMAND :
 switch(LOWORD(wParam))
 {
 case IDM_CASCADE :
 if (IS_WIN95)
 CascadeWindows(hWndClient, MDITILE_SKIPDISABLED,
 NULL, 0, NULL);
 else
 SendMessage(hWndClient, WM_MDICASCADE,
 MDITILE_SKIPDISABLED, 0);
 break;
 .
 .
 .

CREATEMDIWINDOW WIN32S WINDOWS 95 WINDOWS NT
Description An application must use CreateMDIWindow() to create MDI child windows, rather than using

the CreateWindow() or CreateWindowEx() functions. An application also can use the
WM_MDICREATE message as an alternative.

Syntax HWND CreateMDIWindow(LPCTSTR lpszClassName, LPCTSTR lpszWindowName, DWORD
dwStyle, int x, int y, int nWidth, int nHeight, HWND hWndClient, HINSTANCE hInstance,
LPARAM lParam)

Parameters

lpszClassName LPCTSTR: Points to a null-terminated string specifying the class name of the MDI child
window. The class name must have been registered by a call to RegisterClass().

lpszWindowName LPCTSTR: Points to a null-terminated string that specifies the window name. The window name
is displayed in the title bar of the MDI child window.

dwStyle DWORD: Specifies the window styles of the MDI child window. If the MDI client was created
specifying the style MDIS_ALLCHILDSTYLES, then any window styles listed in the discussion of
CreateWindow() can be specified. Otherwise, only the styles shown in Table 27-1 may be
specified.

x int: Specifies the initial horizontal position, in client coordinates, of the MDI child window.
Use the value CW_USEDEFAULT to allow Windows to assign a default value to this parameter.

y int: Specifies the initial vertical position, in client coordinates, of the MDI child window. Use
the value CW_USEDEFAULT to allow Windows to assign a default value to this parameter.

nWidth int: Specifies the initial width, in client coordinates, of the MDI child window. Use the value
CW_USEDEFAULT to allow Windows to assign a default value to this parameter.

nHeight int: Specifies the initial height, in client coordinates, of the MDI child window. Use the value
CW_USEDEFAULT to allow Windows to assign a default value to this parameter.

hWndClient HWND: Specifies the window handle of the MDI client window that is to manage this MDI child
window.

hInstance HINSTANCE: Identifies the instance of the application that is creating the MDI child window.

lParam LPARAM: An application-defined value. This value is passed to the MDI child window during the
processing of the WM_CREATE message. When the MDI child window receives a WM_CREATE
message, the lParam of this message contains a pointer to a CREATESTRUCT structure. The
first member of this structure, lpCreateParams, contains a pointer to an MDICREATESTRUCT
structure. The lParam member of this structure contains the 32-bit value of lParam from the
CreateMDIWindow() function. See the definition of the CREATESTRUCT structure below. See
the definition of the MDICREATESTRUCT structure under the WM_MDICREATE message.

Returns If successful, this function returns the window handle of the new MDI child window; otherwise,
it returns NULL.

Include File winuser.h

See Also WM_MDICREATE

CREATESTRUCT Definition
 typedef struct tagCREATESTRUCT
 {
 LPVOID lpCreateParams;
 HINSTANCE hInstance;
 HMENU hMenu;
 HWND hwndParent;
 int cy;
 int cx;
 int y;
 int x;
 LONG style;
 LPCTSTR lpszName;
 LPCTSTR lpszClass;
 DWORD dwExStyle;
 } CREATESTRUCT;

lpCreateParams LPVOID: A pointer to data to be used for creating the window. In Windows NT, this member is
the address of a SHORT(16-bit) value that specifies the size, in bytes, of the window creation
data. This value is followed by the creation data. When referring to the data pointed to by this
parameter, because the pointer may not be DWORD aligned, the application should use a pointer
declared as UNALIGNED.

hInstance HINSTANCE: The instance handle of the module that owns the new window.

hMenu HMENU: The menu to be used by the new window.

hwndParent HWND: The parent window handle, if the window is a child window. If the window is owned,
this member identifies the owner window. If the window is not a child or owned window, this
member is NULL.

cy int: The height, in pixels, of the new window.

cx int: The width, in pixels, of the new window.

y int: The y-coordinate of the upper left corner of the new window. If the new window is a child
window, coordinates are relative to the parent window. Otherwise, the coordinates are relative to
the screen origin.

x int: The x-coordinate of the upper left corner of the new window. If the new window is a child
window, coordinates are relative to the parent window. Otherwise, the coordinates are relative to
the screen origin.

style LONG: The style for the new window. This is a combination of the window styles valid for use
with the CreateWindow() function.

lpszName LPCTSTR: A pointer to a null-terminated string that specifies the name of the new window.

lpszClass LPCTSTR: A pointer to a null-terminated string that specifies the class name of the new
window.

dwExStyle DWORD: The extended style for the new window. This ia combination of the extended window
styles valid for use with the CreateWindowEx() function.

Example The code segment creates a new MDI child window when the user selects the New menu item. The
currently active MDI child window is closed when the user selects the Close menu item.

HWND hWndClient;

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uMsg)
 {
 case WM_COMMAND :
 switch(LOWORD(wParam))
 {
 case IDM_NEW :
 {
 HWND hWndChild;

 // Create a new child window.
 //...........................
 hWndChild = CreateMDIWindow((LPTSTR)lpszChild,
 "Document", 0L,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 hWndClient, hInst, 0L);

 ShowWindow(hWndChild, SW_SHOW);
 }
 break;

 case IDM_CLOSE :
 {
 HWND hActiveWnd;

 // Close the active child window.
 //...............................
 hActiveWnd = (HWND)SendMessage(hWndClient,
 WM_MDIGETACTIVE, 0, 0);
 if (hActiveWnd)
 SendMessage(hWndClient, WM_MDIDESTROY, (WPARAM)hActiveWnd, 0); }
 break;

 default :
 return(DefFrameProc(hWnd, hWndClient, uMsg, wParam, lParam));
 }
 break;

 case WM_DESTROY :
 PostQuitMessage(0);
 break;

 .
 .
 .

 default :
 return(DefFrameProc(hWnd, hWndClient, uMsg, wParam, lParam));
 }

 return(0L);
}

DEFFRAMEPROC WIN32S WINDOWS 95 W INDOWS NT
Description The window procedure of an MDI frame window passes all unprocessed messages to

DefFrameProc(). DefFrameProc() allows Windows to provide default MDI application behavior.

Syntax LRESULT DefFrameProc(HWND hWndFrame, HWND hWndClient, UINT uMsg, WPARAM
wParam, LPARAM lParam)

Parameters

hWndFrame HWND: Specifies the window handle of the MDI frame window.

hWndClient HWND: Specifies the window handle of the MDI client window.

uMsg UINT: Specifies the message to be processed.

wParam WPARAM: Specifies additional data, specific to this message.

lParam LPARAM: Specifies additional data, specific to this message.

Returns The return value is specific to the message being processed. The MDI frame windows window
procedure should simply return Delframe Prac()’s the return value.

Include File winuser.h

See Also DefMDIChildProc(), DefWindowProc()

Example See the example for the CreateMDIWindow() function.

DEFMDICHILDPROC WIN32S WINDOWS 95 WINDOWS NT
Description The window procedure of an MDI child window passes all unprocessed messages to this function.

DefMDIChildProc() allows Windows to provide default MDI application behavior.

Syntax LRESULT DefMDIChildProc(HWND hWndChild, UINT uMsg, WPARAM wParam, LPARAM
lParam)

Parameters

hWndChild HWND: Specifies the window handle of the MDI child window.

uMsg UINT: Specifies the message to be processed.

wParam WPARAM: Specifies additional data, specific to this message.

lParam LPARAM: Specifies additional data, specific to this message.

Returns The return value is specific to the message being processed. The MDI child window’s window
procedure should simply return DefMDIChildProc()’s the return.

Include File winuser.h

See Also DefFrameProc(), DefWindowProc()

Example The following code segment shows the implementation of a minimal window procedure for an
MDI child window.

LRESULT CALLBACK ChildWndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uMsg)
 {
 default :

 return(DefMDIChildProc(hWnd, uMsg, wParam, lParam));
 }

 return(0L);
}

TILEW INDOWS WINDOWS 95
Description An application uses TileWindows() to arrange all nonminimized MDI child windows in a tiled

(nonoverlapped) manner. This function is similar to the WM_MDITILE message and identical to
the TileChildWindows() function, except that the user can specify the window handles of the
windows to be affected, and can limit the area of the MDI client window that is used.

Syntax WORD API TileWindows(HWND hWndParent, WORD wFlags, LPCRECT lpWindowRect,
WORD nWindowCount, CONST HWND *lpWndArray)

Parameters

hWndParent HWND: Specifies the window handle of the parent window. Child windows of the parent window
will be arranged. This parameter typically specifies the MDI client window handle. If this
parameter is NULL, the desktop window is assumed.

wFlags WORD: Specifies various arrangement flags. Table 27-4 gives a list of valid values. In addition,
the MDITILE_VERTICAL and MDITILE_HORIZONTAL flags from Table 27-6 may be specified.

lpWindowRect LPCRECT: Points to a RECT structure that defines the boundaries within which the child
windows are arranged. If this parameter is NULL, the entire client area of the parent window is
assumed.

nWindowCount WORD: Specifies the number of window handles included in the lpWndArray array. This value is
ignored if lpWndArray is NULL.

lpWndArray CONST HWND *: Specifies an array of child window handles. If this parameter is NULL, then all
child windows of the parent window are subject to being arranged.

Returns The return value is the number of windows arranged. If the function fails, the return value is
zero.

Include File winuser.h

See Also CascadeChildWindows(),CascadeWindows(), TileChildWindows()

Related Messages WM_MDITILE

Example This code segment responds to the user selecting the Tile Horizontally and Tile Vertically menu
items. The TileWindows() function is used if the application is running on Windows 95,
otherwise, it sends the WM_MDITILE message to the client window.

HWND hWndClient;

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uMsg)
 {
 case WM_COMMAND :
 switch(LOWORD(wParam))
 {
 case IDM_TILEHORZ :
 if (IS_WIN95)
 TileWindows(hWndClient, MDITILE_HORIZONTAL,
 NULL, 0, NULL);
 else
 SendMessage(hWndClient, WM_MDITILE,
 MDITILE_HORIZONTAL, 0);
 break;

 case IDM_TILEVERT :
 if (IS_WIN95)
 TileWindows(hWndClient, MDITILE_VERTICAL,
 NULL, 0, NULL);

 else
 SendMessage(hWndClient, WM_MDITILE,
 MDITILE_VERTICAL, 0);
 break;
 .
 .
 .

TRANSLATEMDISYSACCEL WIN32S WINDOWS 95 WINDOWS NT
Description An MDI application must call TranslateMDISysAccel() in its main message loop before calling

the normal TranslateAccelerator() function.

Syntax BOOL TranslateMDISysAccel(HWND hWndClient, LPMSG lpMsg)

Parameters

hWndClient HWND: The window handle of the MDI client window.

lpMsg LPMSG: Pointer to the MSG structure containing the current message.

Returns If the message was handled by this function, the return value is TRUE, and no further message
processing is required. If this message returns FALSE, the message was not processed, and normal
message processing should continue.

Include File winuser.h

See Also TranslateAccelerator()

Example The following sequence of code shows the main message loop for a typical MDI application.

 .
 .
 .
 while(GetMessage(&msg, NULL, 0, 0))
 {
 if (hWndClient && TranslateMDISysAccel(hWndClient, &msg))
 continue;

 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 .
 .
 .

WM_MDIACTIVATE WIN32S WINDOWS 95 WINDOWS NT
Description WM_MDIACTIVATE is a message sent to the MDI client window to force one of the MDI child

windows to become the active window. This is usually done by the default window procedure
handler in response to predefined accelerator keys. If an MDI child window receives this message,
it indicates that the MDI child window is either becoming the active windo, or is no longer the
active window.

Parameters

wParam HWND: The window handle of the MDI child window to be activated.

lParam HWND: When this message is sent, this parameter is unused ans should be set to zero. When this
message is received by an MDI child window, this parameter is the window handle of the MDI
child window which is being deactivated.

Returns LRESULT: If this message is processed by an MDI child window, the return value should be set to
zero.

Include File winuser.h

Related Messages WM_MDIGETACTIVE, WM_MDINEXT, WM_NCACTIVATE

WM_MDICASCADE WIN32S WINDOWS 95 WINDOWS NT
Description WM_MDICASCADE is a message sent to the MDI client window to cause all nonminimized

MDI child windows to be rearranged in a cascaded (overlapped) arrangement.

Parameters

wParam UINT: The only value currently supported for this parameter is MDITILE_SKIPDISABLED, which
prevents disabled MDI child windows from being moved.

lParam LPARAM: Not used, set to zero.

Returns BOOL: If successful, the return value is TRUE; otherwise, it is FALSE

Include File winuser.h

See Also CascadeWindows()

Related Messages WM_MDIICONARRANGE, WM_MDITILE

WM_MDICREATE WIN32S WINDOWS 95 .W INDOWS NT
Description WM_MDICREATE is a message sent to the MDI client window to create a new MDI child

window.

Parameters

wParam WPARAM: Not used, set to zero.

lParam LPMDICREATESTRUCT: A pointer to an MDICREATESTRUCT structure. This structure is
used by the MDI client window in the creation of the new MDI child window. See the definition
of the MDICREATESTRUCT structure below.

Include File winuser.h

Returns If this message is successful, it returns the window handle of the new MDI child window;
otherwise, it returns NULL.

See Also CreateMDIWindow()

Related Messages WM_CREATE, WM_MDIDESTROY

MDICREATESTRUCT Definition
 typedef struct tagMDICREATESTRUCT
 {
 LPCTSTR szClass;
 LPCTSTR szTitle;
 HANDLE hOwner;
 int x;
 int y;
 int cx;
 int cy;
 DWORD style;
 LPARAM lParam;
 } MDICREATESTRUCT;

szClass LPCTSTR: A pointer to a null-terminated string specifying the name of the window class of the
MDI child window. The class name must have been registered by a previous call to the
RegisterClass() or RegisterClassEx() function.

szTitle LPCTSTR: A pointer to a null-terminated string that represents the title of the MDI child
window. Windows displays the title in the child window's title bar.

hOwner HANDLE: The instance handle of the application creating the MDI client window.

x int: The initial horizontal position, in client coordinates, of the MDI child window. If this
member is CW_USEDEFAULT, the MDI child window is assigned the default horizontal
position.

y int: The initial vertical position, in client coordinates, of the MDI child window. If this member
is CW_USEDEFAULT, the MDI child window is assigned the default vertical position.

cx int: The initial width, in device units, of the MDI child window. If this member is
CW_USEDEFAULT, the MDI child window is assigned the default width.

cy int: The initial height, in device units, of the MDI child window. If this member is set to
CW_USEDEFAULT, the MDI child window is assigned the default height.

style DWORD: The style of the MDI child window. If the MDI client window was created with the
MDIS_ALLCHILDSTYLES window style, this member can be any combination of the window
styles listed in the description of the CreateWindow() function. Otherwise, this member can be
one or more of the values listed in Table 27-1.

lParam LPARAM: An application-defined 32-bit value.

WM_MDIDESTROY WIN32S W INDOWS 95 W INDOWS NT
Description WM_MDIDESTROY is a message sent to an MDI client window to cause the indicated MDI child

window to be closed.

Parameters

wParam HWND: Indicates which MDI child window is to be closed.

lParam LPARAM: Not used, set to zero.

Returns LRESULT: This message always returns zero.

Include File winuser.h

Related Messages WM_MDICREATE

WM_MDIGETACTIVE WIN32S WINDOWS 95 WINDOWS NT
Description WM_MDIGETACTIVE is a message sent to the MDI client window to determine which MDI

child window is currently the active window.

Parameters This message has no parameters.

Returns HWND: If successful, this returns the window handle of the MDI child window that is currently
active. Otherwise, it returns NULL.

Include File winuser.h

See Also GetWindowLong()

Related Messages WM_MDIACTIVATE

WM_MDIICONARRANGE WIN32S WINDOWS 95 WINDOWS NT
Description WM_MDIICONARRANGE is a message sent to the MDI client window to rearrange all

minimized MDI child windows. Icons representing the minimized child windows are arranged
along the bottom of the MDI client window.

Parameters This message has no parameters.

Include File winuser.h

See Also ArrangeIconicWindows()

Related Messages WM_MDICASCADE, WM_MDITILE, WM_MDIRESTORE

WM_MDIMAXIMIZE WIN32S WINDOWS 95 WINDOWS NT
Description WM_MDIMAXIMIZE is a message sent to the MDI client window to maximize an MDI child

window. A maximized MDI child window occupies the entire MDI client window, appends its
caption text to the MDI frame window’s caption, places a RESTORE button on the far right of
the MDI frame window’s menu bar, and places its SYSTEM menu button on the far left of the
MDI frame window’s menu bar.

Parameters

wParam HWND: The window handle of the MDI child window to be maximized.

lParam LPARAM: Not used, set to zero.

Returns LRESULT: The return value is always zero.

Include File winuser.h

Related Messages WM_MDIRESTORE

WM_MDINEXT WIN32S WINDOWS 95 WINDOWS NT
Description WM_MDINEXT is a message sent to the MDI client window which will activate either the next

MDI child window or the previous MDI child window.

Parameters

wParam HWND: The window handle of an MDI child window. The MDI child window to be activated is
either the next or the previous MDI child window, with relation to this window.

lParam UINT: If this parameter is zero, the next MDI child window is activated; otherwise, the previous
MDI child window is activated.

Returns The return value is always zero.

Include File winuser.h

Related Messages WM_MDIACTIVATE, WM_MDIGETACTIVE

WM_MDIREFRESHMENU WIN32S WINDOWS 95 WINDOWS NT
Description WM_MDIREFRESHMENU is a message sent to the MDI client window to refresh the MDI frame

window’s menu bar. This is usually done after the application has made some modifications to
the menu. After sending this message, the application must call DrawMenuBar() to redraw the
menu.

Parameters This message has no parameters.

Returns HMENU: If successful, the return value is the handle of the MDI frame windows menu; otherwise,
it is NULL.

Include File winuser.h

See Also DrawMenuBar()

Related Messages WM_MDISETMENU

WM_MDIRESTORE WIN32S WINDOWS 95 WINDOWS NT
Description WM_MDIRESTORE is a message sent to the MDI client window to restore a minimized or

maximized MDI child window to its original size before being minimized or maximized.

Parameters

wParam HWND: Indicates the MDI child window to be restored.

lParam LPARAM: Not used, set to zero.

Returns LRESULT: The return value is always zero.

Include File winuser.h

Related Messages WM_MDIMAXIMIZE

WM_MDISETMENU WIN32S WINDOWS 95 WINDOWS NT
Description WM_MDISETMENU is a message sent to the MDI client window to associate a different menu

with the application window. You can replace either the entire menu bar or just the pop-up menu
item being dynamically altered by the MDI client window.

Parameters

wParam HMENU: The menu handle of the menu that is to replace the MDI frame window’s menu bar. If
you’re not replacing the entire menu bar, set this parameter to NULL

lParam HMENU: The menu handle of the menu that is to replace the MDI frame windows pop-up menu
that is being dynamically altered by the MDI client window. If you’re not replacing the pop-up
menu, this parameter should be NULL.

Returns HMENU: If successful, the return value is the menu handle of the MDI frame window’s menu bar;
otherwise, it is NULL.

Include File winuser.h

See Also DrawMenuBar()

Related Messages WM_MDIREFRESHMENU

WM_MDITILE WIN32S WINDOWS 95 WINDOWS NT
Description WM_MDITILE is a message sent to the MDI client window to cause all nonminimized MDI

child windows to be rearranged in a tiled (nonoverlapped) arrangement.

Parameters

wParam UINT: Specifies a tile flag. This parameter may be one of the values shown in Table 27-6.

Table 27-6. WM_MDITILE Parameter Values

Value Description

MDITILE_HORIZONTAL Tiles the windows so that they extend the width of the MDI client window.
MDITILE_SKIPDISABLED Prevents disabled MDI child windows from being affected.
MDITILE_VERTICAL Tiles the windows so that they extend the height of the MDI client window.

Returns If successful, the return value is TRUE; otherwise, it is FALSE.

Include File winuser.h

See Also TileWindows()

Related Messages WM_MDICASCADE, WM_MDIICONARRANGE

